American National Standard

For Power Tools

Safety Requirements for
Portable
Compressed-Air-Actuated
Fastener Driving Tools
American National Standard
For Power Tools

Safety Requirements for Portable Compressed-Air-Actuated Fastener Driving Tools

Sponsor / Standards-Developer
International Staple, Nail and Tool Association (ISANTA)

Approved
April 7, 2015
American National Standards Institute, Inc.

Abstract
American National Standard for Power Tools - Safety Requirements for Portable, Compressed-Air-Actuated, Fastener Driving Tools, ANSI SNT-101-2015, sets forth safety requirements for tool manufacturers, owners, employers (including self-employed contractors), designers, safety professionals, supervisors, operators, purchasers and other persons concerned with or responsible for, safe use of these tools and users in the design, construction, use, repair, and maintenance of these tools. The tools are powered by compressed air. The tools drive nails, staples and other fasteners, typically in the industrial size range. The covered tools are used for fastening applications that generally, but by no means exclusively, involve wood-to-wood connections as found in commercial and residential building construction (framing, sheathing, decking, flooring, insulation, finish work, factory-build units and components, and coverings for walls, ceilings and roofs, etc.); carton closure; and the manufacture of furniture, box-spring assemblies, containers (boxes, pallets, crating, etc.), cabinets, etc.
American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards-developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person or production application has the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
FOREWORD

[The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI’s requirements for an ANS. As such, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the standard.]

The Safety Requirements for Portable, Compressed-Air-Actuated, Fastener Driving Tools contain safety requirements for tool manufacturers, tool purchasers and tool operators, and is intended to provide safeguards for persons and property from accidental hazards arising from the use of compressed-air-actuated fastening tools, often referred to as “nail guns” by users and operators. It is also intended to assist government and other regulatory bodies in the development, promulgation and enforcement of appropriate safety directives.

The sponsor for this standard is the International Staple, Nail and Tool Association (ISANTA). Consensus for this standard was achieved by use of the ANSI Canvass Method. Information for this publication was obtained from sources believed to be reliable and was considered technically sound at the time it was developed. It should not be assumed that all acceptable safety requirements are contained in this document or that different measures may not be required under certain circumstances or conditions.

Neither the Canvassers nor ISANTA assume any responsibility or liability for the use or misuse of, nor make any warranty, guarantee or representation whatsoever as to the reliability, sufficiency or accuracy of the information contained in this publication. ISANTA does not approve, endorse or guarantee the performance, suitability or safety of any specific products, methods or sources of information. This publication should not be referenced in any way that would imply otherwise. Suggestions for improvement to this publication are welcome. They should be addressed to the International Staple, Nail and Tool Association, 8735 West Higgins Road, Suite 300, Chicago, Illinois 60631-2738.

The following organizations were recognized as having an interest in safety requirements for power fastening tools and were canvassed prior to, and participated in, the consensus process leading to the approval of this standard:

Aerosmith Fastening Systems
All American Group, Inc.
ANSI A10 Committee
Arnold, Mr. Rick
Associated Builders & Contractors, Inc.
Blow-In-Blanket Contractors Association
California Framing Contractors Association
Campbell-Hausfeld
Carlson Systems
Carpenters’ District Council of Greater St. Louis
Compressed Air & Gas Institute
Deegear, Dr. Gary
Exponent
Fasco America
Guertin, Mr. Michael
H.D. Supply—White Cap Construction Supply Inc.
Hitachi Koki U.S.A. Inc.
ITW- Illinois Tool Works
Kentec Inc.
Lipscomb, PhD Hestor
Makita USA
National Association of Home Builders
National Institute for Occupational Safety and Health
National Roofing Contractors Association
National Safety Council
National Wooden Pallet & Container Association
Northern California Contractors Association
Northern California Nail Company Inc.
Packaging Inc.
Peace Industries
Power Tool Institute
PrimeSource Building Products
Robert Bosch Tool Corporation
The Ryland Group Inc.
Senco Brands
Skyline Corporation
Southern California Nailing
Stanley Black & Decker
Structural Roof Erectors Association
Techtronic Industries North America Corporation.
TUV Rheinland of North America, Inc.
Underwriters Laboratories
West Virginia University – Safety & Health Extension
Winchester Homes Inc.

At the date of the April, 2015 printing of this standard, the membership of ISANTA consisted of the following companies:

BlueLinx Co.
Building Material Distributors
Falcon/Specialty Fastening System
Fasco/Beck
Hitachi-Koki USA
ITW
Jaaco Corporation
Makita USA
Max USA
National Nail Corporation
PrimeSource Building Products
Senco Brands
Stanley Black & Decker
Techtronic Industries North America Corporation.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>1 Scope, Purpose, Units and Effective Date</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Units</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Effective Date</td>
<td>7</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>7</td>
</tr>
<tr>
<td>3 Design and Construction</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Tool Operating Controls</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Marking</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Over Pressure</td>
<td>13</td>
</tr>
<tr>
<td>3.4 Modified Tools</td>
<td>13</td>
</tr>
<tr>
<td>4 Tool Operation</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Responsibility</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Personal Protective Equipment</td>
<td>14</td>
</tr>
<tr>
<td>5 Tool Maintenance</td>
<td>15</td>
</tr>
<tr>
<td>5.1 Responsibility for Proper Tool Maintenance</td>
<td>15</td>
</tr>
<tr>
<td>5.2 Repair Parts and Accessories</td>
<td>15</td>
</tr>
<tr>
<td>6 Tool Maintenance Instructions</td>
<td>16</td>
</tr>
<tr>
<td>6.1 Responsibility</td>
<td>16</td>
</tr>
<tr>
<td>6.2 Contents</td>
<td>16</td>
</tr>
<tr>
<td>7 Tool Operating/Safety Instructions</td>
<td>17</td>
</tr>
<tr>
<td>7.1 Development</td>
<td>17</td>
</tr>
<tr>
<td>7.2 Provision</td>
<td>17</td>
</tr>
<tr>
<td>7.3 Replacement</td>
<td>17</td>
</tr>
<tr>
<td>7.4 Contents</td>
<td>17</td>
</tr>
<tr>
<td>8 Power Source</td>
<td>21</td>
</tr>
<tr>
<td>8.1 Safe Power Source</td>
<td>21</td>
</tr>
<tr>
<td>8.2 Hazardous Power Source</td>
<td>21</td>
</tr>
<tr>
<td>8.3 Regulator</td>
<td>21</td>
</tr>
<tr>
<td>8.4 Hose</td>
<td>22</td>
</tr>
<tr>
<td>8.5 Disconnect</td>
<td>22</td>
</tr>
<tr>
<td>Annexes</td>
<td>23</td>
</tr>
<tr>
<td>A Symbols</td>
<td>23</td>
</tr>
<tr>
<td>B Exemplar Tool Label Meeting Marking Requirements</td>
<td>24</td>
</tr>
<tr>
<td>C Referenced American National Standards</td>
<td>25</td>
</tr>
</tbody>
</table>
1 Scope, Purpose, Units and Effective Date

1.1 Scope

The requirements of this standard apply to portable hand-held compressed-air-powered tools for driving fasteners, such as nails and staples, into or through concrete, fabric, fiberboard, metal, plastic, wood, wood products, cartons, and other materials.

1.2 Purpose

This standard establishes safety requirements for the design, construction, use, repair, and maintenance of portable hand-held compressed-air-powered tools to guard against the injury of tool users and bystanders. It provides guidelines to designers, manufacturers, owners, employers (including self-employed contractors), supervisors, purchasers, safety professionals, operators and other persons concerned with or responsible for the safe use of these tools, and assists in the promulgation of appropriate safety directives and safety training programs.

1.3 Units

This standard contains customary units as well as SI (metric) units. Requirements are based on customary units. SI units in the text have been directly (soft) converted from the customary units.

1.4 Effective Date

This standard shall apply only to tools manufactured subsequent to the effective date of this standard. The effective date of this standard --April 7, 2016-- is twelve months after its approval by American National Standards Institute.

2 Definitions

2.1 activate (operating controls): To move or otherwise engage an operating control so that it is in a state that allows the tool to be actuated or that satisfies one requirement for the tool to be actuated.

2.2 actuate (tool): To cause movement of the tool component(s) intended to drive a fastener.

1 Throughout the standard, defined terms are shown in bold type.
2.3 actuation system: A trigger, workpiece contact and/or other operating control, used separately or in some combination or sequence, to actuate the tool.

2.3.1 Single-sequential actuation: An actuation system in which there is more than one operating control, and the operating controls must be activated in a specific sequence to actuate the tool. If the tool has a trigger and a workpiece contact, the workpiece contact must be activated before the trigger for the tool to actuate. Additional actuation can occur when a specific operating control, other than a workpiece contact, is released and re-activated.

2.3.2 Full-sequential actuation: An actuation system in which there is more than one operating control, and the operating controls must be activated in a specific sequence to actuate the tool. If the tool has a trigger and a workpiece contact, the workpiece contact must be activated before the trigger for the tool to actuate. Additional actuation can occur only when all operating controls are released and re-activated in the same sequence.

2.3.3 Contact actuation: An actuation system in which there is more than one operating control, and the operating controls can be activated in any sequence to actuate the tool. Additional actuation can occur when any operating control is released and re-activated.

2.3.4 Selective actuation: An actuation system that allows discrete selection of two or more of the following actuation systems: single-sequential actuation, full-sequential actuation or contact actuation. One or more of the selections shall be single-sequential actuation or full-sequential actuation.

2.3.5 Automatic reversion actuation: An actuation system with more than one operating control that can be activated in any sequence to actuate the tool. Regardless of the initial sequence, the actuation system is designed to automatically revert to single-sequential actuation, full-sequential actuation, neutral or off.

2.4 Air inlet port: The opening on the tool to which the air hose is connected, usually by means of a threaded fitting.

2.5 Coil nailer: A nailer that drives fasteners from a collated coil of nails. The primary application of this tool is production applications.

2.6 Distributor: Any retailer of products manufactured and/or sold by the tool manufacturer including dealers, franchisees, or any other wholesale or retail outlet.
2.7 **dual trigger**: Trigger arrangement comprised of two triggers that work in conjunction with each other such that both triggers require activation to actuate the tool. A sequence of activation may be necessary for tool actuation.

2.8 **employer**: The person, firm or company that contracts, hires, or is responsible for the personnel operating a tool. The employer is typically, though not necessarily, the owner, renter, or borrower of the tool. The employer also could be the operator of the tool.

2.9 **fastener**: A staple, pin, brad, nail, or other fastening device that is designed and manufactured for use in the tools within the scope of this standard.

2.10 **heavy-duty stapler**: A stapler capable of driving:

2.10.1 16 gauge (American Steel Wire Gauge) [0.0625-inch nominal diameter (1.6 mm)] or heavier wire, or

2.10.2 staples having nominal thickness of 0.0563 inch (1.4 mm) or larger, or

2.10.3 staples having nominal width of 0.064 inch (1.6 mm) or larger.

The primary application of this tool is production applications.

2.11 **jam**: An obstruction in the fastener feed or drive area of a tool.

2.12 **light-duty tool**: A tool designed to only drive fasteners meeting both of these requirements:

2.12.1 fasteners 1 inch (25.4 mm) or shorter (nominal length)

2.12.2 fasteners made from wire with:

2.12.2.1 cross-sectional area less than 18 ASWG (American Steel Wire Gauge) [0.0475-inch diameter (1.2 mm)], or

2.12.2.2 staples with nominal thickness less than 0.038 inch (1.0 mm) and with nominal width less than 0.050 inch (1.3 mm).

2.13 **maximum air pressure**: The maximum allowable pressure of the compressed air, as specified by the manufacturer, for operating a tool.

2.14 **may**: This word is understood to be permissive.
2.15 **operating control**: A control that separately, or as part of an actuation system, can cause the actuation of a tool.

2.16 **production application**: High volume, production-like applications, either at a facility, manufacturing setting or on-site, such as, but not limited to, pallets, furniture, manufactured housing, upholstery, and sheathing.

2.17 **shall**: The word “shall” is to be understood as denoting a mandatory requirement.

2.18 **thickness** (staple leg): maximum dimension of staple-leg cross section measured parallel to staple-crown axis.

2.19 **tool**: A portable hand-held device for driving fasteners that is powered by compressed air.

2.20 **trigger**: A tool operating control activated manually by a tool operator.

2.21 **width** (staple leg): maximum dimension of staple-leg cross section measured perpendicular to staple-crown axis.

2.22 **workpiece**: The intended object into which a fastener is to be driven by a tool.

2.23 **workpiece contact**: An operating control element or assembly on the tool intended to be activated by the material to be fastened.

3 Design and Construction

3.1 Tool Operating Controls

3.1.1 **Trigger**

All tools shall be equipped with a trigger. All tools shall be designed so that the tool cannot be actuated when the trigger is in a released position (i.e., in an “off” position). The body of the tool shall be designed and the trigger shall be located so as to minimize unintended activation. This protection can and generally is afforded by the surrounding structures of the tool. A need for a discrete trigger guard is not implied.

3.1.2 **Workpiece Contact**

In addition to the requirements of Clause 3.1.1, all tools, other than light-duty tools and those excluded in Clause 3.1.4.2, shall be equipped with a workpiece contact. Such tools shall be designed so that the tool cannot be actuated unless
both the trigger and the workpiece contact have been activated. The purpose of this requirement is to prevent actuation of the tool when only the trigger is activated. The workpiece contact shall be designed so that it does not become deformed or inoperable under intended use.

3.1.3 Actuation System Options

All tools, other than light-duty tools, heavy-duty staplers, and coil nailers, shall be manufactured with an actuation system meeting the requirements of single-sequential actuation, full-sequential actuation, selective actuation or automatic reversion actuation.

3.1.3.1 Tools manufactured with selective actuation shall be shipped with their actuation system set as single-sequential actuation, full-sequential actuation, neutral or off.

3.1.3.2 Certain applications and certain users may require different actuation system options for purposes of functionality and utility. In such cases, other actuation systems may be available. Means for making such other actuation systems available include, but are not limited to, the following:

3.1.3.2.1 Actuation system is provided with, but not installed on the tool. Such actuation system is in addition to the actuation system manufactured with the tool to meet the requirements of Clause 3.1.3.

3.1.3.2.2 Actuation system is offered as a conversion option.

3.1.3.2.3 Actuation system is manufactured and shipped as part of the tool, in response to an order from a production application customer.

3.1.4 Other Tool Operating Control Options

3.1.4.1 Manufacturers may offer additional actuation system options for production applications, beyond those specified in Clause 3.1.3, for any tool model.

3.1.4.2 For tools, other than light-duty tools, it might not be practical to meet the requirements of Clause 3.1.2 and for those tools, a workpiece contact is not required, provided the requirements of either Clause 3.1.4.2.1, 3.1.4.2.2 or 3.1.4.2.3 are met.
3.1.4.2.1 The **tool** is offered with a **dual trigger** option and the **tool** is designed to only drive **fasteners** meeting the requirements of Clause 2.12.2.

3.1.4.2.2 The **tool** is equipped with a self-contained clinching anvil(s.) (Examples include, but are not limited to, carton closing staplers, sisal/bedding **tools** with fixed anvils, carton pliers.)

3.1.4.2.3 The same degree of safety as provided by Clause 3.1.2 can be demonstrated or is obtained by other means and the **tool** is marked as to its **actuation system**. (Examples **may** include palm nailers, hardwood flooring **tools**, multi-blow metal hardware nailers, etc.)

3.2 Marking

3.2.1 **All tools shall** be marked with the following:

3.2.1.1 Manufacturer's or **distributor's** identity

3.2.1.2 Model number

3.2.1.3 Serial number or date code

3.2.1.4 **Maximum air pressure**

3.2.3 **All tools shall** be marked with the following safety warnings, or equivalent, unless the design of the **tool** requires otherwise:

3.2.3.1 Read and understand tool labels and manual. Failure to follow warnings could result in DEATH or SERIOUS INJURY.

3.2.3.2 Operators and others in work area MUST wear safety glasses with side shields.

3.2.3.3 Keep fingers AWAY from trigger when not driving fasteners to avoid accidental discharge.
3.2.3.4 Know and understand what trigger system you are using. Check manual for triggering options.

3.2.3.5 NEVER point tool at yourself or others in work area.

3.2.3.6 NEVER use oxygen or other bottled gasses. Explosion may occur.

3.2.4 All tools shall be marked with the following safety symbols. Alternate symbols evaluated in accordance with ANSI Z535.3 meeting that criteria are acceptable.

3.2.4.1 Annex A Symbol 1, Read Tool Manual.

3.2.4.2 Annex A Symbol 2, Wear Eye Protection.

3.2.4.3 Annex A Symbol 3, Personal Injury.

3.2.5 There are two annexes in this standard related to marking. Annex A and Annex B are informative and do not present mandatory requirements.

3.2.6 Tools manufactured with selective actuation, or which can be converted to another actuation system, shall be marked to indicate the actuation system selected. Color is an acceptable means of marking.

3.3 Over Pressure

3.3.1 Tool Body

The pressure vessel of the tool shall be designed to withstand, for a period of two minutes without rupturing, hydrostatic pressure of five (5) times the maximum air pressure when applied to the air inlet port and with all vents from the vessel closed.²

3.3.2 Fully Assembled Tool

The tool shall be designed so that it does not self-actuate while pressurized, for a period of two minutes, by a power source up to 1.5 times the maximum air pressure or 200 psig (13.8 bar), whichever is greater.

3.4 Modified Tools

² Hydrostatic pressure testing is safer than testing with compressed air. The tool usually must be modified to achieve the test pressure by preventing pressure loss through fluid leakage. This modification typically involves removing trigger and valve mechanisms and plugging openings.
Tools shall not be modified unless authorized in **tool** manual or approved in writing by **tool** manufacturer. Modified or altered **tools shall** comply with this standard.

4 **Tool Operation**

4.1 **Responsibility**

The **employer**, **tool** owner and **tool** operator\(^3\) are responsible for the safe use of the **tool** by, at a minimum:

4.1.1 ensuring that the manufacturer's **tool** operating/safety instructions are available to operators.

4.1.2 selecting an appropriate **tool actuation system** from options available under Clause 3.1.3 and Clause 3.1.4, taking into consideration the work applications for which the **tool** is used.

4.1.3 training the operator in the safe use of the **tool** as described in the **tool** operating/safety manual, including the requirements of Clause 7.

4.1.4 allowing only persons who have read and understand the **tool** operating/safety instructions to operate the **tool**.

4.1.5 allowing **tool** use only when the **tool** operator and all other personnel in the work area are wearing appropriate eye protection equipment, and when required, other appropriate personal protective equipment such as head, hearing and foot protection equipment.

4.2 **Personal Protective Equipment**

4.2.1 **Eye Protection Devices**

Eye protection devices **shall** conform to the requirements of ANSI Z87.1, *American National Standard for Occupational and Educational Personal Eye and Face Protection Devices*, and **shall** provide protection against flying particles both from the front and side.

4.2.2 **Head Protection**

\(^3\) In the case where the **tool** operator is the **tool** owner, or is not working for an **employer**, the **tool** operator assumes the responsibilities of the **employer**.
Head protection shall conform to ANSI Z89.1, “American National Standard for Industrial Head Protection.”

4.2.3 Hearing Protection

Hearing protection shall have a Noise Reduction Rating (NRR) determined in accordance with US Environmental Protection Agency rules that is appropriate for the noise exposure.4

5 Tool Maintenance

5.1 Responsibility for Proper Tool Maintenance

5.1.1 Responsibility

The employer, tool owner and tool operator5:

5.1.1.1 are responsible for ensuring that tools are kept in safe working order as described in the Tool Operating/Safety Instructions.

5.1.1.2 are responsible for ensuring that only qualified personnel shall repair the tool.

5.1.1.3 are responsible for ensuring that manufacturer’s tool maintenance instructions are available to personnel performing maintenance.

5.1.1.4 shall ensure that tools that require repair are removed from service and that tags and physical segregation are used as a means of control.

5.2 Repair Parts and Accessories

Tools shall be repaired or equipped only with parts or accessories that are supplied or recommended by the tool manufacturer, or with parts or accessories that perform equivalently to those supplied or recommended by the tool manufacturer.

4 OSHA’s standard for exposure to continuous noise levels (29 CFR 1926.52) addresses both the noise level and the duration of exposure. In this standard, workers exposed for 15 minutes at 115 A-weighted decibels (dBA) have the same exposure as workers exposed for 8 hours at 90 dBA.

The NIOSH and OSHA limit for impulse noise is 140 decibels: above this level a single exposure can cause instant damage to the ear.

NIOSH recommends that an 8-hour exposure should not exceed 85 dBA and a one-second exposure should not exceed 130 dBA without using hearing protection.

5 In the case where the tool operator is the tool owner, or is not working for an employer, the tool operator assumes the responsibilities of the employer.
6 Tool Maintenance Instructions

6.1 Responsibility

6.1.1 The tool manufacturer or distributor shall have available written information on the proper maintenance to follow for each tool.

6.1.2 The employer, tool owner and tool operator\(^6\) are responsible for:

6.1.2.1 ensuring that the tool maintenance instructions are available to the appropriate personnel.

6.1.2.2 proper maintenance of all tools in their possession.

6.2 Contents

6.2.1 The principles of ANSI Z535.6, American National Standard for Product Safety Information in Product Manuals, Instructions, and Other Collateral Materials, related to design and location of product safety messages in instructions may be used as guidelines for safety messages.

6.2.2 The tool maintenance instructions shall include the following:

6.2.2.1 Only qualified personnel shall repair the tool and shall use parts as described in Clause 5.2.

6.2.2.2 Tool Operating/Safety Instructions as described in Clause 7.

6.2.2.3 Frequency of maintenance.

6.2.2.4 What to do if a tool jams.

6.2.2.5 Common signs that repair or maintenance is needed.

6.2.2.6 What maintenance and repairs may be done by employer, tool owner or tool user and what must be done by authorized manufacturer’s representative.

6.2.2.7 Tool conditions that require tool to be taken out of service.

\(^6\) In the case where the tool operator is the tool owner, or is not working for an employer, the tool operator assumes the responsibilities of the employer.
7 **Tool** Operating/Safety Instructions

7.1 Development

The **tool** manufacturer **shall** develop for each **tool** instructions regarding the **tool**'s safe operation and the use of personal protective equipment as described in Clause 4.2. Such instructions are traditionally provided in the form of printed booklets, but other media **may** be used. These instructions **may** be produced as a single item (manual, etc.) or **may** be produced as a set of items that together include the required information. The principles of ANSI Z535.6 related to design and location of product safety messages in instructions **may** be used as guidelines for safety messages.

7.2 Provision

The **tool** manufacturer or **distributor shall** provide the instructions described in Clause 7.1 with each **tool**. **Tools** sold or otherwise delivered into the workplace, typically to an **employer, shall** be accompanied by these instructions.

7.3 Replacement

The **tool** manufacturer or **distributor shall** make additional **tool** operating/safety instructions available to requesting **employers** and requesting operators.

7.4 Contents

Instructions on the following subject matter **shall** be included:

7.4.1 **Actuation** systems

- 7.4.1.1 Availability of different **actuation system** options.
- 7.4.1.2 How to obtain different **actuation system** options.
- 7.4.1.3 How to operate different **actuation system** options.
- 7.4.1.4 How to determine the **actuation system** selected.

7.4.2 Flammable Atmospheres

Do not operate **tool** in explosive atmospheres, such as in the presence of flammable liquids, gases or combustible dust.

7.4.3 **Tool** modification
The tool should not be modified unless authorized in the tool manual or approved in writing by the tool manufacturer.

7.4.4 Tool maintenance

Refer to the tool maintenance instructions for detailed information on the proper maintenance of a tool.

7.4.5 Recommended fasteners and accessories

7.4.5.1 Use only fasteners made or recommended by the tool manufacturer, or fasteners that perform equivalently to those recommended by the manufacturer.

7.4.5.2 Use only accessories made or recommended by the tool manufacturer, or accessories that perform equivalently to those recommended by the manufacturer.

7.4.6 Personal Protective Equipment

7.4.6.1 Appropriate personal protective equipment is to be worn.

7.4.6.2 Eye protection

7.4.6.2.1 A written warning intended for the tool operator that eye protection equipment must be worn by the operator and other people in the work area.

7.4.6.2.2 A written warning intended for the employer that the employer is responsible to enforce the use of eye protection equipment by the tool operator and all other personnel in the work area.

7.4.7 Inspect tool before operating to:

7.4.7.1 Establish use of proper power source as set forth in Clause 8.

7.4.7.2 Determine that tool is in proper working order.

7.4.7.3 Determine actuation system.

7.4.7.4 Check for misalignment or binding of moving parts and any other condition that may affect tool operation.
7.4.8 Operating controls

7.4.8.1 Do not use a tool with missing or damaged safety warning label(s.)

7.4.8.2 A tool that is not in proper working order must not be used. Tags and physical segregation shall be used for control.

7.4.8.3 Do not remove, tamper with, or otherwise cause tool operating controls to become inoperable.

7.4.8.4 Do not operate tool if any portion of the tool operating controls is inoperable, disconnected, altered, or not working properly.

7.4.9 Tool handling

7.4.9.1 Only persons who have read and understand the tool operating/safety instructions should operate the tool.

7.4.9.2 Always assume that tool contains fasteners.

7.4.9.3 Do not point tool toward yourself or anyone whether it contains fasteners or not.

7.4.9.4 Keep bystanders and children away while operating tool.

7.4.9.5 Do not actuate tool unless tool is placed firmly against the workpiece.

7.4.9.6 Respect tool as a working implement.

7.4.9.7 Do not engage in horseplay.

7.4.9.8 Stay alert, focus on your work and use common sense when working with tools.

7.4.9.9 Do not use tool while tired, after having consumed drugs or alcohol, or while under the influence of medication.

7.4.9.10 Do not overreach. Keep proper footing and balance at all times.

7.4.9.11 Do not hold or carry tool with a finger on the trigger.

7.4.9.12 Drive fasteners into proper work surface only.

7.4.9.13 Do not drive fasteners into other fasteners.
7.4.9.14 After driving a fastener, tool may spring back ("recoil") causing it to move away from the work surface. To reduce risk of injury always manage recoil by:

7.4.9.14.1 always maintaining control of tool.

7.4.9.14.2 allowing recoil to move tool away from work surface.

7.4.9.14.3 not resisting recoil such that tool will be forced back into the work surface. In “Contact Actuation Mode,” if workpiece contact is allowed to re-contact work surface before the trigger is released, an unintended discharge of a fastener will occur.

7.4.9.14.4 keeping face and body parts away from tool.

7.4.9.15 When working close to an edge of a workpiece or at steep angles use care to minimize chipping, splitting or splintering, or free flight or ricochet of fasteners, which may cause injury.

7.4.9.16 Keep hands and body away from fastener discharge area of tool.

7.4.9.17 Do not load tool with fasteners when any one of the operating controls is activated.

7.4.9.18 Do not operate tool with any power source other than that specified in tool operating/safety instructions.

7.4.9.19 Do not operate tool with any operating pressure other than that specified in tool operating/safety instructions.

7.4.9.20 Always select an actuation system that is appropriate to the fastener application and the training of the operator.

7.4.9.21 Use extra caution when driving fasteners into existing walls or other blind areas to prevent contact with hidden objects or persons on other side (e.g., wires, pipes.)

7.4.9.22 Do not lift, pull or lower tool by the hose.

7.4.10 Disconnecting tool

Disconnect tool from the power source when:
7.4.10.1 Not in use;
7.4.10.2 Performing any maintenance or repairs;
7.4.10.3 Clearing a jam;
7.4.10.4 Elevating, lowering or otherwise moving the tool to a new location;
7.4.10.5 Tool is outside of the operator’s supervision or control; or
7.4.10.6 Removing fasteners from the magazine.

8 Power Source

8.1 Safe Power Source

The compressed air power source shall be pressure-regulated. The regulated pressure must not exceed the maximum air pressure marked on tool. If a regulator fails, the pressure delivered to a tool must not exceed 1.5 times the maximum air pressure, or 200 psig (13.8 bar), whichever is greater. A tool normally is not operated at the maximum air pressure but at a lower pressure determined by the type of fastener used, the workpiece, and other conditions of use.

8.2 Hazardous Power Source

Hazardous power sources shall not be used. Explosion may occur. Hazardous power sources include, but are not limited to:

8.2.1 Reactive gases including, but not limited to, oxygen and combustible gases.

8.2.2 Pressure sources that can deliver in excess of 1.5 times the maximum air pressure of a tool or 200 psig (13.8 bar), whichever is greater, if a regulator fails.

8.3 Regulator

Pressure regulators shall be used to limit compressed air pressure supplied to tool. Regulators shall be set at an operating pressure that is lower than or equal to the tool manufacturer's specified maximum air pressure.

7 Power source pressure-limiting is normally accomplished by use of one or more pressure-limiting devices, such as pressure relief valve(s) or rupture disc(s).
8.4 Hose

Compressed air supply hoses shall have a minimum working pressure rating equal to or greater than the pressure from the power source if a regulator fails, or 150 psig (10.3 bar), whichever is greater.

8.5 Disconnect

Tools shall only be used with a fitting or hose coupling attached in such a manner that all compressed air in tool is discharged at the time the fitting or hose coupling is disconnected.
Annex A
(informative)

Symbols

SYMBOL 1: Read Tool Manual

Figure A1

SYMBOL 2: Wear Eye Protection

Figure A2

SYMBOL 3: Personal Injury

Figure A3

A.1 Per Clause 3.2.4 alternate symbols evaluated in accordance with ANSI Z535.3 meeting that criteria are acceptable.
Annex B
(informative)

Exemplar Tool Label Meeting Marking Requirements

B1. Development of Label

All recommendations of ANSI Z535.3 regarding label type style, type size, use of upper/lower case, etc. were followed.

B2. Layout

Figures B1 and B2 are example layouts of symbols and text messages. Layouts may vary on a tool based on considerations such as area and shape of spaces available on tool for a label.

Note: Use of safety orange in signal word panel of both sample labels corresponds to use of the signal word “Warning,” whereas safety red would be used in signal word panel if signal word was “Danger.”
Annex C
(informative)

Referenced American National Standards

Below is a list of American National Standards referenced in this standard.

